

In-situ Quick-EXAFS

Klaus Attenkofer (ANL/APS)

XAFS theory: http://xafs.org/Tutorials?action=AttachFile&do=view&target=Newville_xas_fundamentals.pdf

Nano-particle example: JOURNAL OF PHYSICAL CHEMISTRY C,114, 9207-9215, 2010.

Fe on GaAs example: PHYSICAL REVIEW B 74, 165405, 2006.

Overview

- Introduction: What we want to know?
 - The photocathode: a complex heterogeneous sample system.
 - Structure and chemical composition during growth.
 - The surface composition and its chemistry.
 - Changes during operation.
- XAFS
 - What is NEXAFS & EXAFS?
 - How does the experiment look like?
 - Examples:
 - doping of nano-particles
 - Characterization of spintronics interfaces (GaAs-Fe interface)
- Time resolved Experiments
 - QEXAFS & "ultrafast"
 - The proposed system at the APS
- Conclusion

Introduction: What we want to know? Changes during operation.

J.H.E. Cartwright et al. / Thin Solid Films 518 (2010) 3422-3427

Transition Morphology with No Long Range Structure Beyond the nm-Level

- What time scales are involved?
- How is the energy introduced: thermal/ non-thermal processes (melting)
- Which processes are reversible and which are irreversible
- Correlations between structure and functionality?

Available time resolution: 100ps-days

Introduction: What we want to know?

The surface composition and its chemistry.

e-J. Surf. Sci. Nanotech. Vol. 5 (2007) 80-88

- Exact details of surface and Cs contribution determines electronic states of activation layer
- Dark counts are highly effected by these details
- Effects of morphology unknown
- Long term stability depends on exact composition

Phys. Rev. Lett. 81, 721–724 (1998)
Photocathodes for Photo-Injector Applications

4

XAFS

What is X-ray Absorption?

- Absorption is mostly treated in Two-Step-Model (absorption/relaxation)
- "Principle" difference: photo-electron in bonded (NEXAFS) are non-bonded (EXAFS) state
- NEXAFS probes electronic states EXAFS next neighbors
- Good description can be found:

http://xafs.org/Tutorials?action=AttachFile&do=view&target=Newville_xas_fundamentals.pdf

Initial absorption process

Photocathodes for Photo-Injector Applications

5

XAFS How to Measure XAFS?

Transmission Experiment: The missing photon! $I_T = I_0 \cdot e^{-\mu(E_{X-ray})d}$

Relaxation process: Secondary photon or electron

$$\mu(E_{X-ray})d = a \bullet \frac{I_{F/E}}{I_0}$$

- Detection method: Transmission (reflection), fluorescence (high yield for energies > 4KeV), electron yield/Auger (high yield for energies < 2KeV)
- Scanning of incidence energy
- Emitted photon/electron has constant energy and is typical for atomic species (in non resonant case)
 Photocathodes for Photo-Injector Applications

XAFS

The signal: NEXAFS & EXAFS

NEXAFS:

- Finger print method using reference samples (local probe)
- Comparison with theoretical calculation of spectrum (fit of modelreverse Monte Carlo)

Photocathodes for Photo-Injector Applications

XAFS

A closer look to the EXAFS range

Out-going wave:
$$\varphi(k,r) = \frac{e^{ikr}}{kr}$$

$$\chi(k) \propto \varphi_{\text{out-going reflected}}(k,r=0)$$

$$\chi(k) \propto \varphi_{(out_going*reflected)}(k,r=0)$$

- Scatting strength of neighbor
- Phase-shift during "reflection"
- Is strongly reduced for "large R"
- Exafs is a local probe
- Fourier Transformation of $\chi(k)$ provides pair-distribution function ($\delta(k)$ is required.

$$\chi(k) \propto \frac{e^{ikR}}{kR} * \left[2kf(k)e^{i\delta(k)}\right] * \frac{e^{ikR}}{kR} + C.C. \longrightarrow \chi(k) = \frac{f(k)}{kR^2}\sin(2kR + \delta(k))$$

j: Shell-index R: Distance

Photocathodes for Photo-Injector Applications

XAFS

What you can learn from XAFS:

- NEXAFS (element selective):
 - Speciation
 - Empty Density of States (DOS)
 - Local symmetry of absorber atom
- EXAFS (element selective):
 - Pair-distribution function of next neighbors (~3Å-5Å)
 - Thermal & static disorder of neighbors
 - Interstitial or substitutions for dopents
 - Differentiation between light and heavy neighbors (amplitude)
- Both techniques are powerful if :
 - System has a high degree of disorder
 - The grain size is below ~10nm
 - Theory is available to create model structures
- Is typically combined with:
 - PDF (x-ray scattering of high energetic photons) similar to powder diffraction
 - XRD (X-ray diffraction)
 - Electron diffraction & microscopy (TEM/AFM/STM)

Examples:

Doping of nano particles: Zn_{1-x}Co_xO

- Particle size about 2nm
- Problem:
 - Is Co substituting Zn?
 - Is there a concentration when Co phase-segregates?
 - Is surface composition identical to "bulk"?
 - Is Co substitution creating a lattice relaxation?
- To solve the problem:
 - XAFS measurement taken at:
 - Co K-edge
 - Zn K-edge
 - XRD
 - Analysis with
 - Conventional Fourier-analysis
 - Reverse Monte Carlo
- Publication: JOURNAL OF PHYSICAL CHEMISTRY C,114, 9207-9215, 2010.

Examples: Doping of nano particles: Zn_{1-x}Co_xO

Co K-edge

10/12/10

9720

x=0.15

x=0.10 x=0.05 x=0.01 x=0.005 x=0.001

theory

Co₃O₄

Co metal

7780

x=0.20 x=0.15 x=0.10 x=0.05 x=0.01 x=0.005 x=0.001

x=0

theory

CoO

Examples:

Doping of nano particles: Zn_{1-x}Co_xO

Examples: Despine of page particle

Doping of nano particles: Zn_{1-x}Co_xO

14

Examples:

Doping of nano particles: Zn_{1-x}Co_xO

15

10/12/10

Results:

- What was necessary:
 - Measuring of multiple edges
 - Measuring under multiple conditions (concentration)
 - Analysis with conventional XAFS analysis and RMC analysis

Quantitative description of pair-distribution function

- Detailed model how the Co is distributed in the particles (dependent on concentration)
- No segregation (bulk or surface) was detected (NEXAFS & EXAFS)

Zn and Co have same valence state

Examples: Effects of 5 mono layers of Fe on GaAs (Spintronics example)

- Single crystal, UHV in-situ experiment; single crystal GaAs and MBE growth of Fe
 - (001) substrate orientation
 - Ga-rich surface
 - 4x6 surface reconstruction
- Problem:
 - How is the surface reconstruction influenced?
 - Is there an anisotropic in-plane strain?
 - Island growth or layer growth?
- To solve the problem:
 - XAFS at the Fe-Kedge
 - measurement taken at 2 different polarizations
- Publication: PHYSICAL REVIEW B 74, 165405, 2006.

Examples:

Effects of 5 mono layers of Fe on GaAs (Spintronics example)

18

Examples: Effects of 5 mono layers of Fe on GaAs (Spintronics example)

Examples: Effects of 5 mono layers of Fe on GaAs (Spintronics example)

- What was necessary:
 - Measuring of multiple polarizations and orientations
 - Gracing incidence measurement
 - Theory with predictions
- Results:
 - Transition from island growth to film growth
 - Epitaxial growth
 - Measured distortion is smaller than predicted (if existing)
 - Zn and Co have same valence state

Time resolved Experiments

QEXAFS & "ultrafast"

QEXAFS: Quick EXAFS

Time resolution:100ms-s

J. Synchrotron Rad. (2001). 8, 354-356

- DEXAFS: Dispersive EXAFS
 - Time resolution:1μs-s

Time resolved Experiments QEXAFS & "ultrafast"

"ultrafast approach" or how to make a movie:

- Using natural bunching of ring:
 - Signal of every bunch will be stored independently (currently 6500 bunches over 1ms)
 - Final signal will be averaged over multiple excitation pulses
 - Maximum time-resolution depends on ring structure
 - Maximum record length depends on trigger-rep-rate and available electronics
 - Time-slices can be binned to result better statistics

Time

Time resolved Experiments The proposed system at the APS

- Combined SAXS/WAXS/ XAFS approach
- In-situ growth chamber is in preparation
- Scattering detection is done with PILATUS 2M (30Hz readout)
- Spectroscopy detection system integrated with "ultrafast aproach"
- Gracing incidence technique

Conclusion

- X-ray techniques can help to characterize:
 - complex phase segregations during growth and use of PC's
 - And develop an atomistic model of the cathode-vacuum interface
- Combined X-ray techniques provide:
 - Elemental, chemical, structural information on crystalline, poly-crystalline and nanomaterials.
 - Questions of interface sciences can be addressed.
 - Combination with theory provides powerful method to derive microscopic models of complex heterogeneous systems
- Experimental facilities are under construction
 - Combined studies will be possible at BNL and ANL
 - Time resolution from 100ps to s possible
 - This is a starting point, more efforts are essential

Introduction: What we want to know? The photocathode: a complex heterogeneous sample system.

- Typical "thickness" of active area (fast cathodes): 10nm-100nm
- Most "high efficiency" cathodes are semiconductor cathodes (III-V, or bi- and multi-alkali)
- Functionality of semiconductor cathodes depends on band-structure of substrate, doping profile, segregation effects, and surface composition

Introduction: What we want to know? Structure and chemical composition during growth.

Transition Morphology
with No Long Range Structure
Beyond the nm-Level

Matchstick Morphology
Consisting of Parallel
Columns with Domed Tops

Porous Morphology
Consisting of Tapered
Columns Separated
by Voids

Tone M

Zone M

Zone T

Zone M

Zone

K-Na-Cs/Sb: segregation effects yields to electric field inside the cathode

Ion Energy (eVatorn)

Petrov, JVSTA 21 (2003) S117

Fig. 1. Schematic diagram illustrating fundamental growth processes controlling microstructural evolution: nucleation, island growth, impingement and coalescence of islands, grain coarsening, formation of polycrystalline islands and channels, development of a continuous structure, and film growth (see Ref. 9).

Phys. Rev. B 59, 5178-5188 (1999)

- Amorphous versus polyand crystalline growth
- Growth characteristic depends:
 - Thickness of layer
 - Rest-gas composition
 - Morphology and chemistry of substrate
- Amorphous may be good (?):
 - High mobility of ions
 - Chemical potential determines composition
 - Should work for strong covalent states

Photocathodes for Photo-Injector Applications